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Introduction

• This part of the course deals with techniques that are applicable to the solution of the constrained 
optimization problem:

• There are many techniques available for the solution of a constrained nonlinear programming problem. 
All the methods can be classified into two broad categories: direct methods and indirect methods.

• In the direct methods, the constraints are handled in an explicit manner, whereas in most of the indirect 
methods, the constrained problem is solved as a sequence of unconstrained minimization problems.
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Characteristic of a constrained problem
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Characteristic of a constrained problem

In the presence of the constraints, an optimization problem may have 
the following features:

• The constrainst may have no effect on the optimum point; that is, the
constrained minimum is the same as the unconstrained minimum as
shown in the figure. In this case, the minimum point X* can be found
by making use of the necessary and sufficient conditions as follows:

• However to use these conditions one must be certain that the
constraints are not going to have any effect on the minimum.
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• The optimum, unique solution occurs on a constraint boundary as shown. In this case, the Kuhn-
Tucker necessary conditions indicate that the negative of the gradient must be expressible as a
positive linear combination of the gradients of the active constraints.

Characteristic of a constrained problem
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• If the objective function has two or more unconstrained local minima, the constrained problem may have 
multiple minima as shown in the figure.

Characteristic of a constrained problem
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• In some cases, even if the objective function has a single unconstrained minimum, the constraints may introduce 
multiple local minima as shown in the figure.

• A constrained optimization technique must be able to locate the minimum in all the situations outlined above.

Characteristic of a constrained problem
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Direct Methods

RANDOM SEARCH METHODS

The random search methods described for unconstrained minimization can be used with minor modifications to solve a 
constrained optimization problem. The basic procedure can be described by the following steps:

1. Generate a trial design vector using one random number for each design variable.

2. Verify whether the constraints are satisfied at the trial design vector. Usually, the equality constraints are considered 
satisfactory whenever their magnitudes lie within a specified tolerance. If any constraint is violated, continue 
generating new trial vectors until a trial vector that satisfies all the constraints is found.

3. If all the constraints are satisfied, retain the current trial vector as the best design if it gives a reduced objective 
function value compared to the previous best available design. Otherwise, discard the current feasible trial vector and 
proceed to step 1 to generate a new trial design vector.

4. The best design available at the end of generating a specified maximum number of trial design vectors is taken as the 
solution of the constrained optimization problem.
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RANDOM SEARCH METHODS

• It can be seen that several modifications can be made to the basic procedure indicated above. For example, 
after finding a feasible trial design vector, a feasible direction can be generated (using random numbers) 
and a one-dimensional search can be conducted along the feasible direction to find an improved feasible 
design vector.

• Another procedure involves constructing an unconstrained function, F(X), by adding penalty for violating 
any constraint as:

where

indicate the squares of violations of inequality and equality constraints, respectively, and a and b are 
constants.

Direct Methods
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Direct Methods

RANDOM SEARCH METHODS

• The equation

indicates that while minimizing the objective function f (X), a positive penalty is added whenever a
constraint is violated, the penalty being proportional to the square of the amount of violation. The values of
the constants a and b can be adjusted to change the contributions of the penalty terms relative to the
magnitude of the objective function.

• Note that the random search methods are not efficient compared to the other methods described in this
chapter. However, they are very simple to program and are usually reliable in finding a nearly optimal
solution with a sufficiently large number of trial vectors. Also, these methods can find near global optimal
solution even when the feasible region is nonconvex.
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Direct Methods

SEQUENTIAL LINEAR PROGRAMMING

• In the sequential linear programming (SLP) method, the solution of the original nonlinear programming
problem is found by solving a series of linear programming problems.

• Each LP problem is generated by approximating the nonlinear objective and constraint functions using first-
order Taylor series expansions about the current design vector Xi.

• The resulting LP problem is solved using the simplex method to find the new design vector Xi+1.

• If Xi+1 does not satisfy the stated convergence criteria, the problem is relinearized about the point Xi+1 and the
procedure is continued until the optimum solution X* is found.
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Direct Methods

SEQUENTIAL LINEAR PROGRAMMING

• If the problem is a convex programming problem, the linearized constraints always lie entirely
outside the deasible region. Hence the optimum solution of the approximating LP problem, which
lies at a vertex of the new feasible region, will lie outside the original feasible region.

• However, by relinearizing the problem about the new point and repeating the process, we can
achieve convergence to the solution of the original problem in a few iterations.

• The SLP method is also known as the cutting plane method.
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Direct methods

SEQUENTIAL LINEAR PROGRAMMING

1. Start with an initial point X1 and set the iteration number as i = 1. The point X1 need not be 
feasible. 

2. Linearize the objective and constraint functions about the point Xi as
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Direct methods

SEQUENTIAL LINEAR PROGRAMMING

3. Formulate the approximating linear programming problem as:

Notice that the LP problem in the above equation may sometimes have an     unbounded solution. This 
can be avoided by formulating the first approximating LP problem by considering only the following 
constraints:

li   xi  ui          i=1,2,...,n

li  and ui   represent the lower and upper bounds on xi , respectively.
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Direct methods

SEQUENTIAL LINEAR PROGRAMMING

4. Solve the approximating LP problem to obtain the solution vector Xi+1

5. Evaluate the original constraints at Xi+1; that is, find

If gj (Xi+1)ϵ for j = 1,2,...,m, and |hk (Xi+1) |> ϵ for some k, find the most 
violated constraint, for example, as
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Direct methods

SEQUENTIAL LINEAR PROGRAMMING

Relinearize the constraint gk (X)0 about the point Xi+1 as

and add this as the (m+1)th inequality constraint to the previous LP problem.

6. Set the new iteration number as i=i+1, the total number of constraints in the
new approximating LP problem as m+1 inequalities and p equalities, and go to
step 4.
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Direct methods

The sequential linear programming method has several advantages:

1. It is an efficient technique for solving complex programming problems with nearly linear
objective functions.

2. Each of the approximating problems will be a LP problem and hence can be solved quite
efficiently. Moreover, any two consecutive approximating LP problems differ by only one
constraint, and hence the dual simplex method can be used to solve the sequence of
approximating LP problems much more efficiently.

3. The method can easily be extended to solve integer programming problems. In this case, one
integer LP problem has to be solved in each stage.
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Direct Methods

Geometric Interpretation of the Method:

The SLP method can be illustrated with the help of a one-
variable problem:

Minimize f (x) = c1x

subject to g(x)  0

where c1 is a constant and g (x) is a nonlinear function of 
x. 

Let the feasible region and the contour of the objective 
function be as shown in the figure:
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Geometric Interpretation of the Method:

To avoid any possibility of an unbounded solution, let us 
first take the constraints on x as:

c  x  d

where c and d represent the lower and upper bounds on 
x. With these constraints, we formulate the LP problem:

Minimize f (x) = c1x

subject to c  x  d

Direct Methods
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Sequential Linear Programming Problem

• The optimum solution of this approximating LP problem can be
seen to be x* = c. Next, we linearize the constraint g(x) about
point c and add it to the previous constraint set. Thus, the new LP
problem becomes:

Minimize f (x) = c1x

subject to c  x  d

The feasible region of x, according to the above two constraints,
is given by e  x  d as shown in the figure. The optimum
solution of the approximating LP problem given by the above
equations can be seen to be x* = e. Next, we linearize the
constraint g(x)  0 about the current solution x=e* and add it to
the previous constraint set to obtain the next approximating LP
problem as:

0))(()( −+ cxc
dx

dg
cg
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Sequential Linear Programming Problem

Minimize    f (x) = c1x

subject to    c  x  d

The permissable range of x, according to the above 
constraints can be seen to be f  x  d from the figure. The 
optimum solution of the LP problem of the above 
equations can be obtained as x*=f.

0))(()( −+ cxc
dx

dg
cg

0))(()( −+ exe
dx

dg
eg
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Sequential Linear Programming 

• We then linearize g (x)  0 about the present point x*=f and add it to the previous constraint set to
define a new approximating LP problem. This procedure has to be continued until the optimum
solution is found to the desired level of accuracy.

• As can be seen from the figures, the optimum of all the approximating LP problems (e.g., points
c,e,f,...) lie outside the feasible region and converge toward the optimum point, x = a.

• The process is assumed to have converged whenever the solution of an approximating problem
satisfies the original constraint within some specified tolerance level as

g(xk*)  ϵ

where ϵ is a small positive number and xk* is the optimum solution of the kth approximating LP
problem.
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Sequential Linear Programming

• It can be seen that the lines (hyperplanes in a general problem) defined by g (xk*)+dg/dx (xk*)(x-
xk*) cut off a portion of the existing feasible region. Hence this method is called the cutting plane
method.

Example: Minimize f(x1,x2)=x1 - x2

Subject to g(x1,x2)=3x1
2 - 2x1 x2+ x2

2-1  0

using the cutting plane method. Take the convergence limit in step 5 as ϵ = 0.02.

Note: This example was originally given by Kelly. Since the constraint boundary represents an
ellipse, the problem is a convex programming problem. From graphical representation, the
optimum solution of the problem can be identified as x1* = 0, x2* = 1, and f min= -1
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Sequential Linear Programming

Steps 1, 2, 3:Although we can start the solution from any initial point X1, to avoid the possible 
unbounded solution, we first take the bounds on x1 and x2 as 

And solve the following LP problem:

-2  x1  2

-2  x2  2
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The solution of the problem can be obtained as:

Step 4: Since we have solved one LP problem, we can take

Step 5: Since g1(X2) = 23 > ϵ, we linearize g1(X) about point X2 as

4)(   with −=







= X

2

2-
X f

Sequential Linear Programming
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As

The equation 

becomes

Sequential Linear Programming
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• By adding this constraint to the previous LP problem, the new LP problem becomes:

• Step 6: Set the iteration number as i = 2 and go to step 4.

• Step 7: Solve the approximating LP problem stated in the above equation and obtain the solution

Sequential Linear Programming

35



Sequential Linear Programming

• This procedure is continued until the specified convergence criterion, g1 (Xi)  ϵ, in step 5 is satisfied. 

The computational results are summarized in the table.

36



Sequential Quadratic Programming

• The sequential quadratic programming is one of the most recently developed 
and perhaps one of the best methods of optimization. 

• The method has a theoretical basis that is related to 

1. The solution of a set of nonlinear equations using Newton’s method.

2. The derivation of simultaneous nonlinear equations using Kuhn-Tucker 
conditions to the Lagrangian of the constrained optimization problem.
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• Consider a nonlinear optimization problem with only equality constraints as:

• The extension to include inequality constraints will be considered at a later stage. The Lagrange
function, L (X,), corresponding to the problem of the above equation is given by:

where k is the Lagrange multiplier for the kth equality constraint.

Sequential Quadratic Programming
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Sequential Quadratic Programming

• The Kuhn-Tucker necessary consitions can be stated as: 

where [A] is an n x p matrix whose kth column denotes the gradient of the function hk. The above equations 
represent a set of n+p nonlinear equations in n+p unknowns (xi, i=1,...,n and k, k=1,...,p). These nonlinear 
equations can be solved using Newton’s method. For convenience, we rewrite the above equations as:
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Sequential Quadratic Programming

• According to the Newton’s method, the solution of the above equation can be found as:

where Yj is the solution at the start of the jth equation and ∆Yj is the change in Yj necessary to 
generate the improved solution, Yj+1, and [F]j= [F(Yj)]j  is the (n+p) x (n+p) Jacobian matrix of the 
nonlinear equations whose ith column denotes the gradient of the function Fi (Y) with respect to the 
vector Y.
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Sequential Quadratic Programming

• By substituting 

into

we obtain:
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Sequential Quadratic Programming Method

where 

denotes the Hessian matrix of the Lagrange function. The first set of equations in 

can be written separately as:
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• The equation

and the second set of equations in the equation

can now be combined as:

The above equation can be solved to find the change in the design vector ∆Xj and the new values of the
Lagrange multipliers, j+1.The iterative process indicated by the above equation can be continued until
convergence is achieved.

Sequential Quadratic Programming Method
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Sequential Quadratic Programming Method

• Now consider the following quadratic programming problem:

• Find ∆X that minimizes the quadratic objective function

subject to the linear equality constraints

• The Lagrange function L corresponding to the above problem is given by:

where k is the Lagrange multiplier associated with the kth equality constraint. 
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• The Kuhn-Tucker necessary conditions can be stated as:

• The above equations can be identified to be same as

in matrix form. 

Sequential Quadratic Programming Method
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• This shows that the original problem of the equation 

can be solved iteratively by solving the quadratic programming problem defined by the equation

• In fact, when inequality constraints are added to the original problem, the quadratic programming 
problem of  the above equation becomes:

Sequential Quadratic Programming Method
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with the Lagrange function given by:

• Since the minimum of the Augmented Lagrange function is involved, the sequential quadratic 
programming method is also known as the projected Lagrangian method.

Sequential Quadratic Programming Method
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Solution Procedure

As in the case of Newton’s method of unconstrained minimization, the solution vector ∆X in the 
equation 

is treated as the search direction S, and the quadratic programming subproblem (in terms of the design 
vector S) is restated as: 

Sequential Quadratic Programming Method
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Sequential Quadratic Programming Method

where [H] is a positive definite matrix that is taken initially as the identity matrix and is updated in 
subsequent iterations so as to converge to the Hessian matrix of the Lagrange function of the 
equation:

and 

are constants used to ensure that the linearized constraints do not cut off the feasible space 
completely. Typical values of these constants are given by:
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Sequential Quadratic Programming Method

• The subproblem of the equation 

is a quadratic programming problem and hence methods for minimizing quadratic functions can be
used for their solution. Alternatively, the problem can be solved by any of the methods described in
this lecture since the gradients of the function involved can be evaluated easily. Since the Lagrange
multipliers associated with the solution of the above problem, are needed, they can be evaluated:
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Sequential Quadratic Programming Method
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• Once the search direction, S, is found by solving the problem in the equation

the design vector is updated as:

where * is the optimal step length along the direction S found by minimizing the function (using an 
exterior penalty function approach):

Sequential Quadratic Programming Method
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• The one-dimensional step length * can be found by any of the methods discussed before for one-
dimensional minimization. 

• Once Xj+1 is found from the equation                             , for the next iteration of the Hessian matrix 
[H] is updated to improve the quadratic approximation in the equation 

Sequential Quadratic Programming Method
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• Usually, a modified BFGS formula, given below is used for this purpose:

where        is given by 

and the constants 0.2 and 0.8 in the above equation can be changed, based on numerical 
experience.

Sequential Quadratic Programming Method
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Sequential Quadratic Programming Method

Example 1: Find the solution of the problem

using the sequential quadratic programming technique
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Sequential Quadratic Programming Method - Example 1

Solution: Let the starting point be:

With g1(X1)= g3(X1)=0, g2(X1)=-5.8765, and f (X1)=1.5917. The gradients of the objective and 
constraint functions at X1 are given by:
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Sequential Quadratic Programming Method - Example 1

Solution:

We assume the matrix [H1] to be the identity matrix and hence the objective function of the 
equation 

becomes
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Sequential Quadratic Programming Method - Example 1

Solution:

Equation 

gives 1=3=0 since g1= g3=0 and 2=1.0 since g2<0, and hence the constraints of the equation
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Sequential Quadratic Programming Method -
Example 1

Solution:

can be expressed as: 

We solve this quadratic programming problem directly with the use of the Kuhn-Tucker conditions 
which are given by:
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Sequential Quadratic Programming Method - Example 1

• The equations

can be expressed in this case as: 

• By considering all possibilities of active constraints, we find that the optimum solution of the 
quadratic programming problem is given by
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Sequential Quadratic Programming Method - Example 1

• The new design vector X can be expressed as: 

where  can be found by minimizing the function  in equation 
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Sequential Quadratic Programming Method - Example 1

• By using the quadratic interpolation technique (unrestricted search method can also be used for 

simplicity), we find that  attains its minimum value of 1.48 at *=64.93, which corresponds to 

the new design vector

with f (X2)=1.38874 and g1 (X2)=0.0074932 (violated slightly)
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Sequential Quadratic Programming Method - Example 1

• Next we update the matrix [H] using 

with 
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Sequential Quadratic Programming Method - Example 1
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Sequential Quadratic Programming Method - Example 1

• We can now start another iteration by defining a new quadratic programming problem using

and continue the procedure until the optimum solution is found. Note that the objective 
function reduced from a value of 1.5917 to 1.38874 in one iteration when X changed from X1

to X2.
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Module 5

Constrained Optimization Algorithms: 

Transformation Methods

67



TRANSFORMATION TECHNIQUES

• If the constraints gj (X) are explicit functions of the variables xi and have certain simple forms,
it may be possible to make a transformation of the independent variables such that the
constraints are satisfied automatically.

• Thus, it may be possible to convert a constrained optimization problem into an unconstrained
one by making change of variables. Some typical transformations are indicated below:

If lower and upper bounds are satisfied as

these can be satisfied by transforming the variable xi as:

where yi is the new variable, which can take any value.
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2. If a variable xi is restricted to lie in the interval (0,1), we can use the transformation:

3. If the variable xi is constrained to take only positive values, the transformation can be:

TRANSFORMATION TECHNIQUES
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4. If the variable is restricted to take values lying only in between -1 and 1, the transformation can be 

Note the following aspects of the transformation techniques:

1. The constraints gj(X) have to be very simple functions of xi.

2. For certain constraints, it may not be possible to find the necessary transformation.

3. If it is not possible to eliminate all the constraints by making change of variables, it may be better 
not to use the transformation at all. The partial transformation may sometimes produce a distorted 
objective function which might be more difficult to minimize than the original function.

TRANSFORMATION TECHNIQUES
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Example: Find the dimensions of a rectangular prism type box that has the largest volume when the 
sum of its length, width and height is limited to a maximum value of 60 in, and its length is restricted 
to a maximum value of 36 in.

Solution:  Let x1, x2, and x3 denote the length, width, and height of the box, respectively. The 
problem can be stated as follows: 

TRANSFORMATION TECHNIQUES
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Solution:  By  introducing the new variables as:

The constraints of the equations (E2) to (E4) can be restated as: 

where the upper bound, for example, on y2 is obtained by setting x1=x3=0 in the equation E2.  The 
constraints of the equation E7 will be satisfied automatically if we define new variables zi, i=1,2,3, 
as

TRANSFORMATION TECHNIQUES - Example
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• Thus the problem can be stated as an unconstrained problem as follows: 

• The necessary conditions of optimality yield the relations:

TRANSFORMATION TECHNIQUES - Example
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• Equation E12 gives the nontrivial solution as cos z3=0 or sin2z3=1. Hence the equations E10 and E11

yield sin2z1=5/9 and sin2z2=1/3. 

• Thus, the optimal solution is given by x1*=20 in., x2*=20 in., x3*=20 in., and the maximum 
volume =8000 in3.

TRANSFORMATION TECHNIQUES - Example
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Thanks

75


