

Introduction to Engineering Optimization (ME6806)

Dr. Yogesh Kumar

Assistant Professor

Mechanical Engineering Department

National Institute of Technology Patna

Bihar - 800 005, India

yogesh.me@nitp.ac.in

Bisection Method

Determine two points L and R such that f'(L) < 0 and f'(R) > 0. The stationary point is between the points L and R. We determine the derivative of the function at the midpoint,

$$z = \frac{L + R}{2}$$

If f'(z) > 0, then the interval (z, R) can be eliminated from the search. On the other hand, if f'(z) < 0, then the interval (L, z) can be eliminated. We shall now state the formal steps of the algorithm.

Given a bounded interval $a \le x \le b$ and a termination criterion ε :

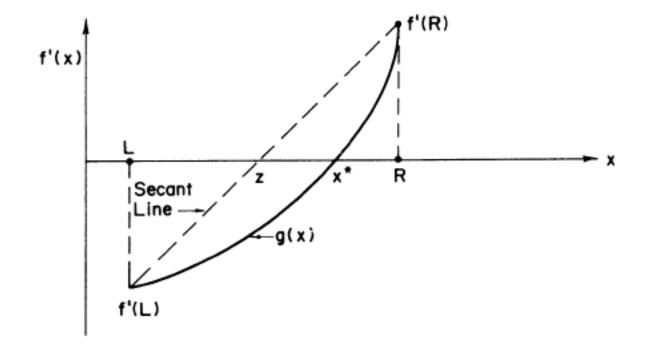
Step 1. Set R = b, L = a; assume f'(a) < 0 and f'(b) > 0.

Step 2. Calculate z = (R + L)/2, and evaluate f'(z).

Step 3. If $|f'(z)| \le \varepsilon$, terminate. Otherwise, if f'(z) < 0, set L = z and go to step 2. If f'(z) > 0, set R = z and go to step 2.

Secant Method

$$z=R-\frac{f'(R)}{[f'(R)-f'(L)]/(R-L)}$$



Secant Method

Consider again the problem

Minimize
$$f(x) = 2x^2 + \frac{16}{x}$$
 over the interval $1 \le x \le 5$
$$f'(x) = \frac{df(x)}{dx} = 4x - \frac{16}{x^2}$$

$$z = R - \frac{f'(R)}{[f'(R) - f'(L)]/(R - L)}$$

Secant Method - Example

Iteration 1

Step 1.
$$R = 5$$
 $L = 1$ $f'(R) = 19.36$ $f'(L) = -12$

Step 2.
$$z = 5 - \frac{19.36}{(19.36 + 12)/4} = 2.53$$

Step 3.
$$f'(z) = 7.62 > 0$$
; set $R = 2.53$.

Iteration 2

Step 2.
$$z = 2.53 - \frac{7.62}{(7.62 + 12)/1.53} = 1.94$$

Step 3.
$$f'(z) = 3.51 > 0$$
; set $R = 1.94$.

Continue until $|f'(z)| \leq \varepsilon$.

Cubic Search Method

$$\overline{f}(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2) + a_3(x - x_1)^2(x - x_2)$$

$$\frac{d\overline{f}(x)}{dx} = a_1 + a_2(x - x_1) + a_2(x - x_2) + a_3(x - x_1)^2 + 2a_3(x - x_1)(x - x_2)$$

$$f_1 = f(x_1) = a_0$$

$$f_2 = f(x_2) = a_0 + a_1(x_2 - x_1)$$

$$f'_1 = f'(x_1) = a_1 + a_2(x_1 - x_2)$$

$$f'_2 = f'(x_2) = a_1 + a_2(x_2 - x_1) + a_3(x_2 - x_1)^2$$

Cubic Search Method

Given an initial point x_0 , positive step size Δ , and termination parameters ε_1 and ε_2 , the formal steps of the cubic search algorithm are as follows:

Step 1. Compute $f'(x_0)$.

If
$$f'(x_0) < 0$$
, compute $x_{K+1} = x_K + 2^K \Delta$ for $K = 0, 1, ...$
If $f'(x_0) > 0$, compute $x_{K+1} = x_K - 2^K \Delta$ for $K = 0, 1, 2, ...$

Step 2. Evaluate f'(x) for points x_{K+1} for K = 0, 1, 2, ... until a point x_M is reached at which $f'(x_{M-1})f'(x_M) \le 0$.

Then set $x_1 = x_{M-1}, x_2 = x_M$.

Compute f_1 , f_2 , f'_1 , and f'_2 .

Step 3. Calculate the stationary point \bar{x} of the cubic approximating function using Eq. (2.10).

Step 4. If $f(\overline{x}) < f(x_1)$, go to step 5. Otherwise, set $\overline{x} = \overline{x} + \frac{1}{2}(\overline{x} - x_1)$ until $f(\overline{x}) \le f(x_1)$ is achieved.

Step 5. Termination check:

If $|f'(\overline{x})| \le \varepsilon_1$ and $|(\overline{x} - x_1)/\overline{x}| \le \varepsilon_2$, stop. Otherwise, set

(i)
$$x_2 = x_1$$
 and $x_1 = \overline{x}$ if $f'(\overline{x})f'(x_1) < 0$

(ii)
$$x_1 = \overline{x}$$
 if $f'(\overline{x})f'(x_2) < 0$