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• Newton–Raphson Method

• Bisection Method 

• Secant Method

• Cubic Search Method
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• Bisection Method = a numerical method in 

Mathematics to find a root of a given function

• Root of a function f(x) = a value a such that: 

f(a) = 0

Function:    f(x) = x2 - 4 

Roots:       x = -2,  x = 2

Because:

f(-2) = (-2)2 - 4 = 4 - 4 = 0       

f(2)  =  (2)2 - 4 = 4 - 4 = 0



Dr. Yogesh Kumar, Mechanical Engineering, NIT Patna2/10/2021 46

• If a function f(x) is continuous on the interval 

[a..b] and sign of f(a) ≠ sign of f(b), then: 

• There is a value c ∈ [a..b] such that: 

f(c) = 0 i.e., there is a root c in the 

interval [a..b] 

Bisection Method - Introduction
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• The Bisection Method is a successive approximation method that narrows down

an interval that contains a root of the function f(x).

• The Bisection Method is given an initial interval [a..b] that contains a root (We

can use the property sign of f(a) ≠ sign of f(b) to find such an initial interval).

• The Bisection Method will cut the interval into 2 halves and check which half

interval contains a root of the function.

• The Bisection Method will keep cut the interval in halves until the resulting

interval is extremely small.

The root is then approximately equal to any value in the final (very small)

interval.
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• Suppose the interval [a..b] is as follows: • We cut the interval [a..b] in the middle:

m = (a+b)/2



We can use this statement to change to the

new interval:
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• Because sign of f(m) ≠ sign of f(a) , we 
proceed with the search in the new
interval [a..b]: 

• In the this example, we have changed the end

point b to obtain a smaller interval that still

contains a root.

• In other cases, we may need to changed the end

point b to obtain a smaller interval that still

contains a root.

b = m; 
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• Initial interval [a..b]: • After cutting the interval in half, the root is 
contained in the right-half, so we have to 
change the end point a: 
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Given: interval [a..b] such that: sign of f(a) ≠ sign of f(b)     

repeat (until the interval [a..b] is "very small")

{

a+b

m = -----;      // m = midpoint of interval [a..b]

2

if ( sign of f(m) ≠ sign of f(b) )

{

use interval [m..b] in the next iteration

(i.e.: replace a with m)

}

else

{

use interval [a..m] in the next iteration (i.e.: 

replace b with m)

}

}

Approximate root = (a+b)/2;    

(any point between [a..b] will do because the interval 

[a..b] is very small)
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