Introduction to Engineering Optimization (ME6806)

Dr. Yogesh Kumar
Assistant Professor
Mechanical Engineering Department
National Institute of Technology Patna
Bihar - 800 005, India
yogesh.me@nitp.ac.in

Methods Requiring Derivatives

- Newton-Raphson Method
- Bisection Method
- Secant Method
- Cubic Search Method

Newton-Raphson Method

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

Newton-Raphson Method

Consider the problem

$$
\text { Minimize } f(x)=2 x^{2}+\frac{16}{x}
$$

Suppose we use the Newton-Raphson method to determine a stationary point of $f(x)$ starting at the point $x_{1}=1$:

$$
f^{\prime}(x)=4 x-\frac{16}{x^{2}} \quad f^{\prime \prime}(x)=4+\frac{32}{x^{3}}
$$

Newton-Raphson Method

Step 1. $x_{1}=1 \quad f^{\prime}\left(x_{1}\right)=-12 \quad f^{\prime \prime}\left(x_{1}\right)=36$

$$
x_{2}=1-\frac{-12}{36}=1.33
$$

Step 2. $x_{2}=1.33 \quad f^{\prime}\left(x_{2}\right)=-3.73 \quad f^{\prime \prime}\left(x_{2}\right)=17.6$

$$
x_{3}=1.33-\frac{-3.73}{17.6}=1.54
$$

We continue until $\left|f^{\prime}\left(x_{k}\right)\right|<\varepsilon$, where ε is a prespecified tolerance.

Bisection Method - Introduction

- Bisection Method $=$ a numerical method in

Mathematics to find a root of a given function

- Root of a function $f(x)=$ a value a such that:

$$
f(a)=0
$$

Function: $f(x)=x^{2}-4$
Roots: $\quad x=-2, x=2$

Because:

$$
\begin{aligned}
& f(-2)=(-2)^{2}-4=4-4=0 \\
& f(2)=(2)^{2}-4=4-4=0
\end{aligned}
$$

Bisection Method - Introduction

- If a function $f(x)$ is continuous on the interval [a..b] and sign of $f(a) \neq \operatorname{sign}$ of $f(b)$, then:
- There is a value $c \in[a . . b]$ such that: $f(c)=0$ i.e., there is a root c in the interval [a.. b]

Bisection Method - Introduction

- The Bisection Method is a successive approximation method that narrows down an interval that contains a root of the function $f(x)$.
- The Bisection Method is given an initial interval [a..b] that contains a root (We can use the property sign of $f(a) \neq$ sign of $f(b)$ to find such an initial interval).
- The Bisection Method will cut the interval into 2 halves and check which half interval contains a root of the function.
- The Bisection Method will keep cut the interval in halves until the resulting interval is extremely small.
The root is then approximately equal to any value in the final (very small) interval.

Bisection Method - Introduction

- Suppose the interval [a..b] is as follows:
- We cut the interval $[a . . b]$ in the middle:

$$
m=(a+b) / 2
$$

Bisection Method - Introduction

- Because sign of $f(m) \neq$ sign of $f(a)$, we proceed with the search in the new interval [a..b]:

We can use this statement to change to the new interval:

$$
\mathrm{b}=\mathrm{m} ;
$$

- In the this example, we have changed the end point b to obtain a smaller interval that still contains a root.
- In other cases, we may need to changed the end point b to obtain a smaller interval that still contains a root.

Bisection Method - Introduction

- Initial interval [a..b]:

- After cutting the interval in half, the root is contained in the right-half, so we have to change the end point a :

Bisection Method - Introduction

Bisection Method

Determine two points L and R such that $f^{\prime}(L)<0$ and $f^{\prime}(R)>0$. The stationary point is between the points L and R. We determine the derivative of the function at the midpoint,

$$
z=\frac{L+R}{2}
$$

If $f^{\prime}(z)>0$, then the interval (z, R) can be eliminated from the search. On the other hand, if $f^{\prime}(z)<0$, then the interval (L, z) can be eliminated. We shall now state the formal steps of the algorithm.

Given a bounded interval $a \leqslant x \leqslant b$ and a termination criterion ε :
Step 1. Set $R=b, L=a$; assume $f^{\prime}(a)<0$ and $f^{\prime}(b)>0$.
Step 2. Calculate $z=(R+L) / 2$, and evaluate $f^{\prime}(z)$.
Step 3. If $\left|f^{\prime}(z)\right| \leqslant \varepsilon$, terminate. Otherwise, if $f^{\prime}(z)<0$, set $L=z$ and go to step 2. If $f^{\prime}(z)>0$, set $R=z$ and go to step 2 .

