

Introduction to Engineering Optimization (ME6806)

Dr. Yogesh Kumar

Assistant Professor

Mechanical Engineering Department

National Institute of Technology Patna

Bihar - 800 005, India

yogesh.me@nitp.ac.in

Successive Quadratic Estimation Method

Step 1. Compute $x_2 = x_1 + \Delta x$.

Step 2. Evaluate $f(x_1)$ and $f(x_2)$.

Step 3. If
$$f(x_1) > f(x_2)$$
, let $x_3 = x_1 + 2\Delta x$. If $f(x_1) \le f(x_2)$, let $x_3 = x_1 - \Delta x$.

Step 4. Evaluate $f(x_3)$ and determine

$$F_{\min} = \min\{f_1, f_2, f_3\}$$

 X_{\min} = point x_i corresponding to F_{\min}

Successive Quadratic Estimation Method

Step 5. Use the points x_1 , x_2 , x_3 to calculate \overline{x} using the quadratic estimation formula.

Step 6. Check for termination.

- (a) Is $F_{\min} f(\overline{x})$ small enough?
- (b) Is $X_{\min} \overline{x}$ small enough?

If both are satisfied, terminate. Otherwise, go to step 7.

Step 7. Save the currently best point $(X_{\min} \text{ or } \overline{x})$, the two points bracketing it, or the two closest to it. Relabel them and go to step 4.

Consider the problem

$$Minimize f(x) = 2x^2 + \frac{16}{x}$$

with initial point $x_1 = 1$ and step size $\Delta x = 1$. For convergence parameters use

$$\left| \frac{\text{Difference in } x}{x} \right| \le 3 \times 10^{-2}$$
 $\left| \frac{\text{Difference in } F}{F} \right| \le 3 \times 10^{-3}$

Iteration 1

Step 1.
$$x_2 = x_1 + \Delta x = 2$$

Step 2.
$$f(x_1) = 18$$
 $f(x_2) = 16$

Step 3.
$$f(x_1) > f(x_2)$$
; therefore set $x_3 = 1 + 2 = 3$.

Step 4.
$$f(x_3) = 23.33$$

 $F_{min} = 16$
 $X_{min} = x_2$
Step 5. $a_1 = \frac{16 - 18}{2 - 1} = -2$
 $a_2 = \frac{1}{3 - 2} \left(\frac{23.33 - 18}{3 - 1} - a_1 \right) = \frac{5.33}{2} + 2 = 4.665$
 $\overline{x} = \frac{1 + 2}{2} - \frac{-2}{2(4.665)} = 1.5 + \frac{1}{4.665} = 1.714$
 $f(\overline{x}) = 15.210$

Step 6. Test for termination:

$$\left| \frac{16 - 15.210}{15.210} \right| = 0.0519 > 0.003$$

Step 7. Save \overline{x} , the currently best point, and x_1 and x_2 , the two points that bound it. Relabel the points in order and go to iteration 2, starting with step 4.

Iteration 2

Step 4.
$$x_1 = 1$$
 $f_1 = 18$
 $x_2 = 1.714$ $f_2 = 15.210 = F_{min}$ and $X_{min} = x_2$
 $x_3 = 2$ $f_3 = 16$
Step 5. $a_1 = \frac{15.210 - 18}{1.714 - 1} = -3.908$
 $a_2 = \frac{1}{2 - 1.714} \left(\frac{16 - 18}{2 - 1} - (-3.908) \right) = \frac{1.908}{0.286} = 6.671$
 $\overline{x} = \frac{2.714}{2} - \frac{-3.908}{2(6.671)} = 1.357 + 0.293 = 1.650$
 $f(\overline{x}) = 15.142$

Step 6. Test for termination:

$$\left| \frac{15.210 - 15.142}{15.142} \right| = 0.0045 > 0.003$$
 not satisfied

Step 7. Save \overline{x} , the currently best point, and $x_1 = 1$ and $x_2 = 1.714$, the two points that bracket it.

Iteration 3

Step 4.
$$x_1 = 1$$
 $f_1 = 18$ $x_2 = 1.65$ $f_2 = 15.142 = F_{\min}$ and $f_3 = 1.714$ $f_3 = 15.210$

Step 5.
$$a_1 = \frac{15.142 - 18}{1.65 - 1} = -4.397$$

$$a_2 = \frac{1}{1.714 - 1.650} \left(\frac{15.210 - 18}{1.714 - 1} - (-4.397) \right) = 7.647$$

$$\bar{x} = \frac{2.65}{2} - \frac{-4.397}{2(7.647)} = 1.6125$$

$$f(\bar{x}) = 15.123$$

Step 6. Test for termination:

(i)
$$\left| \frac{15.142 - 15.123}{15.123} \right| = 0.0013 < .003$$

(ii)
$$\left| \frac{1.65 - 1.6125}{1.6125} \right| = 0.023 < 0.03$$

Therefore, terminate iterations.