

Introduction to Engineering Optimization (ME6806)

Dr. Yogesh Kumar

Assistant Professor Mechanical Engineering Department National Institute of Technology Patna Bihar - 800 005, India yogesh.me@nitp.ac.in

Module 3

Single-variable Optimization Algorithms

2/4/2021

Dr. Yogesh Kumar, Mechanical Engineering, NIT Patna

Quadratic Approximation Method

Given three consecutive points x_1 , x_2 , x_3 and their corresponding function values f_1 , f_2 , f_3 , we seek to determine three constants a_0 , a_1 , and a_2 such that the quadratic function

$$q(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$$

agrees with f(x) at these three points. We proceed by evaluating q(x) at each of the three given points. First of all, since

$$f_1 = f(x_1) = q(x_1) = a_0$$

we have

$$a_0 = f_1$$

2/4/2021

Next, since

$$f_2 = f(x_2) = q(x_2) = f_1 + a_1(x_2 - x_1)$$

we have

$$a_1 = \frac{f_2 - f_1}{x_2 - x_1}$$

Finally, at $x = x_3$,

$$f_3 = f(x_3) = q(x_3) = f_1 + \frac{f_2 - f_1}{x_2 - x_1}(x_3 - x_1) + a_2(x_3 - x_1)(x_3 - x_2)$$

Solving for a_2 , we obtain

$$a_2 = \frac{1}{x_3 - x_2} \left(\frac{f_3 - f_1}{x_3 - x_1} - \frac{f_2 - f_1}{x_2 - x_1} \right)$$

Dr. Yogesh Kumar, Mechanical Engineering, NIT Patna

2/4/2021

29

In the case of our quadratic approximating function,

$$\frac{dq}{dx} = a_1 + a_2(x - x_2) + a_2(x - x_1) = 0$$

can be solved to yield the estimate

$$\overline{x} = \frac{x_2 + x_1}{2} - \frac{a_1}{2a_2}$$

Quadratic Search - Example

Consider the estimation of the minimum of

$$f(x) = 2x^2 + \frac{16}{x}$$

on the interval $1 \le x \le 5$. Let $x_1 = 1$, $x_3 = 5$, and choose as x_2 the midpoint $x_2 = 3$. Evaluating the function, we obtain

 $f_1 = 18$ $f_2 = 23.33$ $f_3 = 53.2$

AND THE OF TRUMPLE

Quadratic Search - Example

To calculate the estimate \overline{x} , the constants a_1 and a_2 of the approximating function must be evaluated. Thus,

$$a_{1} = \frac{23.33 - 18}{3 - 1} = \frac{8}{3}$$

$$a_{1} = \frac{f_{2} - f_{1}}{x_{2} - x_{1}}$$

$$a_{2} = \frac{1}{5 - 3} \left(\frac{53.2 - 18}{5 - 1} - \frac{8}{3} \right) = \frac{46}{15}$$

$$a_{2} = \frac{1}{x_{3} - x_{2}} \left(\frac{f_{3} - f_{1}}{x_{3} - x_{1}} - \frac{f_{2} - f_{1}}{x_{2} - x_{1}} \right)$$

Substituting into the expression for \overline{x} ,

$$\overline{x} = \frac{3+1}{2} - \frac{8/3}{2(46/15)} = 1.565$$
 $\overline{x} = \frac{x_2 + x_1}{2} - \frac{a_1}{2a_2}$

The exact minimum is $x^* = 1.5874$.