

Introduction to Engineering Optimization (ME6806)

Dr. Yogesh Kumar

Assistant Professor

Mechanical Engineering Department

National Institute of Technology Patna

Bihar - 800 005, India

yogesh.me@nitp.ac.in

AND INTEREST TO THE OF TECHNOLOGY

Module 3

Single-variable Optimization Algorithms

Interval Refinement Phase - Interval halving

Interval Halving. This method deletes exactly one-half the interval at each stage. This is also called a three-point equal-interval search since it works with three equally spaced trial points in the search interval. The basic steps

Step 1. Let
$$x_m = \frac{1}{2}(a+b)$$
 and $L = b - a$. Compute $f(x_m)$.

Step 2. Set
$$x_1 = a + \frac{1}{4}L$$
 and $x_2 = b - \frac{1}{4}L$.

Note that the points x_1 , x_m , and x_2 are all equally spaced at one-fourth the interval. Compute $f(x_1)$ and $f(x_2)$.

Step 3. Compare $f(x_1)$ and $f(x_m)$.

- (i) If $f(x_1) < f(x_m)$, then drop the interval (x_m, b) by setting $b = x_m$. The midpoint of the new search interval will now be x_1 . Hence, set $x_m = x_1$. Go to step 5.
- (ii) If $f(x_1) \ge f(x_m)$, go to step 4.

Interval Refinement Phase - Interval halving

Step 4. Compare $f(x_2)$ and $f(x_m)$.

- (i) If $f(x_2) < f(x_m)$, drop the interval (a, x_m) by setting $a = x_m$. Since the midpoint of the new interval will now be x_2 , set $x_m = x_2$. Go to step 5.
- (ii) If $f(x_2) \ge f(x_m)$, drop the interval (a, x_1) and (x_2, b) . Set $a = x_1$ and $b = x_2$. Note that x_m continues to be the midpoint of the new interval. Go to step 5.
- **Step 5.** Compute L = b a. If |L| is small, terminate. Otherwise return to step 2.

Remarks

- 1. At each stage of the algorithm, exactly half the length of the search interval is deleted.
- 2. The midpoint of subsequent intervals is always equal to one of the previous trial points x_1 , x_2 , or x_m . Hence, at most two functional evaluations are necessary at each subsequent step.
- 3. After *n* functional evaluations, the initial search interval will be reduced to $(\frac{1}{2})^{n/2}$.

Minimize $f(x) = (100 - x)^2$ over the interval $60 \le x \le 150$. Here a = 60, b = 150, and L = 150 - 60 = 90.

$$x_m = \frac{1}{2}(60 + 150) = 105$$

Stage 1

$$x_1 = a + \frac{1}{4}L = 60 + \frac{90}{4} = 82.5$$

 $x_2 = b - \frac{1}{4}L = 150 - \frac{90}{4} = 127.5$
 $f(82.5) = 306.25 > f(105) = 25$
 $f(127.5) = 756.25 > f(105)$

Hence, drop the intervals (60, 82.5) and (127.5, 150). The length of the search interval is reduced from 90 to 45.

Interval halving – Example

Stage 2

$$a = 82.5$$
 $b = 127.5$ $x_m = 105$
 $L = 127.5 - 82.5 = 45$
 $x_1 = 82.5 + \frac{45}{4} = 93.75$
 $x_2 = 127.5 - \frac{45}{4} = 116.25$
 $f(93.75) = 39.06 > f(105) = 25$
 $f(116.25) = 264.06 > f(105)$

Hence, the interval of uncertainty is (93.75, 116.25).

Stage 3

$$a = 93.75$$
 $b = 116.25$ $x_m = 105$
 $L = 116.25 - 93.75 = 22.5$
 $x_1 = 99.375$
 $x_2 = 110.625$
 $f(x_1) = 0.39 < f(105) = 25$

Hence, delete the interval (105, 116.25). The new interval of uncertainty is now (93.75, 105), and its midpoint is 99.375 (old x_1). Thus, in three stages (six functional evaluations), the initial search interval of length 90 has been reduced exactly to $(90)(\frac{1}{2})^3 = 11.25$.