

Introduction to Engineering Optimization (ME6806)

Dr. Yogesh Kumar

Assistant Professor

Mechanical Engineering Department

National Institute of Technology Patna

Bihar - 800 005, India

yogesh.me@nitp.ac.in

Module 3

Single-variable Optimization Algorithms

Algorithm to Find Global Optima

Maximize f(x)

Subject to $a \le x \le b$

- **Step 1.** Set df/dx = 0 and compute all stationary points.
- **Step 2.** Select all stationary points that belong to the interval [a, b]. Call them x_1, x_2, \ldots, x_N . These points, along with a and b, are the only points that can qualify for a local optimum.
- **Step 3.** Find the largest value of f(x) out of f(a), f(b), $f(x_1)$, . . . , $f(x_N)$. This value becomes the global maximum point.

An Example

Maximize
$$f(x) = -x^3 + 3x^2 + 9x + 10$$
 in the interval $-2 \le x \le 4$
$$\frac{df}{dx} = -3x^2 + 6x + 9 = 0$$

Stationary points x = -1, 3

To find the global maximum, evaluate f(x) at x = 3, -1, -2, and 4:

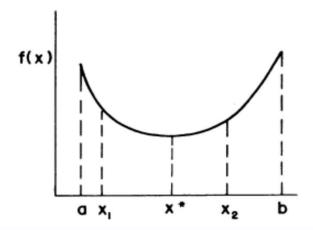
$$f(3) = 37$$
 $f(-1) = 5$
 $f(-2) = 12$ $f(4) = 30$

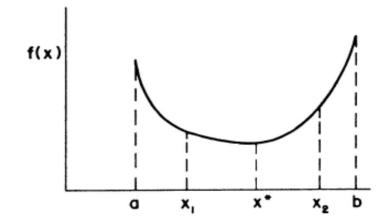
Hence x = 3 maximizes f over the interval (-2, 4)

Region Elimination Methods

Suppose f is strictly unimodal[†] on the interval $a \le x \le b$ with a minimum at x^* . Let x_1 and x_2 be two points in the interval such that $a < x_1 < x_2 < b$. Comparing the functional values at x_1 and x_2 , we can conclude:

- (i) If $f(x_1) > f(x_2)$, then the minimum of f(x) does not lie in the interval (a, x_1) . In other words, $x^* \in (x_1, b)$
- (ii) If $f(x_1) < f(x_2)$, then the minimum does not lie in the interval (x_2, b) or $x^* \in (a, x_2)$





Region Elimination Methods

- Bounding Phase
 - An initial coarse search that will bound or bracket the optimum
- Interval Refinement Phase
 - A finite sequence of interval reductions or refinements to reduce the initial search interval to desired accuracy

Bounding Phase

• Swann's method

$$x_{k+1} = x_k + 2^k \Delta$$
 for $k = 0, 1, 2, ...$

• If

$$f(x_0 - |\Delta|) \ge f(x_0) \ge f(x_0 + |\Delta|) \rightarrow \Delta$$
 is positive

- Else if the inequalities are reversed $\rightarrow \Delta$ is negative
- If $f(x_0 |\Delta|) \ge f(x_0) \le f(x_0 + |\Delta|) \to$ the minimum lies between $x_0 |\Delta|$ and $x_0 + |\Delta|$

Bounding Phase - Example

Consider the problem of minimizing $f(x) = (100 - x)^2$ given the starting point $x_0 = 30$ and a step size $|\Delta| = 5$.

The sign of Δ is determined by comparing

$$f(x_0) = f(30) = 4900$$

$$f(x_0 + |\Delta|) = f(35) = 4225$$

$$f(x_0 - |\Delta|) = f(25) = 5625$$

Since

$$f(x_0 - |\Delta|) \ge f(x_0) \ge f(x_0 + |\Delta|)$$

 Δ must be positive, and the minimum point x^* must be greater than 30. Thus, $x_1 = x^0 + \Delta = 35$.

Bounding Phase - Example

Next,

$$x_2 = x_1 + 2\Delta = 45$$

$$f(45) = 3025 < f(x_1)$$

therefore, $x^* > 35$;

$$x_3 = x_2 + 2^2 \Delta = 65$$

$$f(65) = 1225 < f(x_2)$$

therefore, $x^* > 45$;

$$x_4 = x_3 + 2^3 \Delta = 105$$

$$f(105) = 25 < f(x_3)$$

therefore, $x^* > 65$;

$$x_5 = x_4 + 2^4 \Delta = 185$$

 $f(185) = 7225 > f(x_4)$

therefore, $x^* < 185$. Consequently, in six evaluations x^* has been bracketed within the interval

$$65 \le x^* \le 185$$

Note that the effectiveness of the bounding search depends directly on the step size Δ . If Δ is large, a poor bracket, that is, a large initial interval, is obtained. On the other hand, if Δ is small, many evaluations may be necessary before a bound can be established.