

Introduction to Engineering Optimization (ME6806)

Dr. Yogesh Kumar
Assistant Professor
Mechanical Engineering Department
National Institute of Technology Patna
Bihar - 800 005, India
yogesh.me@nitp.ac.in

Module 3

Single-variable Optimization Algorithms

What is a Function?

- Is a rule that assigns to every choice of x a unique value y = f(x).
- **Domain** of a function is the set of all possible input values (usually x), which allows the function formula to work.
- **Range** is the set of all possible output values (usually y), which result from using the function formula.

What is a Function?

- Unconstrained and constrained function
 - Unconstrained: when domain is the entire set of real numbers R
 - Constrained: domain is a proper subset of *R*
- Continuous, discontinuous and discrete

Figure 2.1. Discontinuous function.

Figure 2.2. Discrete function.

What is a Function?

Monotonic and unimodal functions

- Monotonic:

for any two points x_1 and x_2 , with $x_1 \le x_2$:

$$f(x_1) \le f(x_2)$$
 (monotonically increasing)

$$f(x_1) \ge f(x_2)$$
 (monotonically decreasing)

- Unimodal:

f(x) is unimodal on the interval $a \le x \le b$ if and only if it is monotonic on either side of the single optimal point x^* in the interval.

Unimodality is an extremely important functional property used in optimization.

A monotonic increasing function

A monotonic decreasing function

Page 6

Optimality Criteria

- In considering optimization problems, two questions generally must be addressed:
 - 1. Static Question. How can one determine whether a given point x* is the optimal solution?
 - 2. Dynamic Question. If x* is not the optimal point, then how does one go about finding a solution that is optimal?

Optimality Criteria

Local and global optimum

A function f(x) defined on a set S attains its global minimum at a point $x^{**} \in S$ if and only if

$$f(x^{**}) \le f(x)$$
 for all $x \in S$

A function f(x) defined on S has a *local minimum* (*relative minimum*) at a point $x^* \in S$ if and only if

$$f(x^*) \le f(x)$$
 for all x within a distance ε from x^*

that is, there exists an $\varepsilon > 0$ such that, for all x satisfying $|x - x^*| < \varepsilon$, $f(x^*) \le f(x)$.

Figure 2.7. Local and global optima.

Identification of Single-Variable Optima

• For finding local minima (maxima)

$$\frac{df}{dx}\bigg|_{x=x^*} = 0$$
 AND $\frac{d^2f}{dx^2}\bigg|_{x=x^*} \ge 0 \ (\le 0)$

Proof follows...

• These are necessary conditions, i.e., if they are not satisfied, x^* is not a local minimum (maximum). If they are satisfied, we still have no guarantee that x^* is a local minimum (maximum).

Stationary Point and Inflection Point

• A stationary point is a point x^* at which

$$\frac{df}{dx}\bigg|_{x=x^*} = 0$$

- An *inflection point* or *saddle-point* is a stationary point that does not correspond to a local optimum (minimum or maximum).
- To distinguish whether a stationary point is a local minimum, a local maximum, or an inflection point, we need the *sufficient* conditions of optimality.

Theorem

- Suppose at a point x^* the first derivative is zero and the first nonzero higher order derivative is denoted by n.
 - If n is odd, then x^* is a point of inflection.
 - If n is even, then x^* is a local optimum.

• Moreover:

- If that derivative is positive, then the point x^* is a local minimum.
- If that derivative is negative, then the point x^* is a local maximum.

An Example

$$f(x) = x^3$$

$$\frac{df}{dx}\Big|_{x=0} = 0$$
 $\frac{d^2f}{dx^2}\Big|_{x=0} = 0$ $\frac{d^3f}{dx^3}\Big|_{x=0} = 6$

$$\frac{d^3f}{dx^3}\bigg|_{x=0} = 6$$

•Thus the first non-vanishing derivative is 3 (odd), and x = 0 is an inflection point.