Metal Forming Processes (ME5807)

Dr. Yogesh Kumar

Assistant Professor Mechanical Engineering Department National Instiute of Technology Patna Bihar - 800 005, India yogesh.me@nitp.ac.in NIT Patna

ME5807 || Metal Forming Processes

LECTURE NO. 3 11 September 2020

Friction in Metal Forming

- Friction in metal forming arises because of the close contact between the tool and work surfaces and the high pressures that drive the surfaces together in these operations.
- In most metal forming processes, friction is undesirable for the following reasons:
 - 1 Metal flow in the work is retarded.
 - 2 The forces and power to perform the operation are increased.
 - 3 Rapid wear of the tool occurs.
- Friction and tool wear are more severe in hot working.
- If the coefficient of friction becomes large enough, a condition known as *sticking* occurs.

<u>sticking</u> in metal working is the tendency for the two surfaces in relative motion to adhere to each other rather than slide.

Lubrication in Metal Forming

- Metalworking lubricants are applied to tool-work interface in many forming operations to reduce harmful effects of friction.
- Benefits obtained from the application of lubricants are:
 - Reduced sticking, forces, power, tool wear
 - 2 Better surface finish
 - 3 Removes heat from the tooling
- Consideration in choosing an appropriate metalworking lubricant include:
 - **1** Type of forming process (rolling, forging, drawing, etc.)
 - 2 Hot working or cold working
 - 3 Work material
 - 4 Chemical reactivity with tool and work metals
 - 5 Ease of application
 - 6 Cost

A metal is deformed in a tension test into its plastic region. The original specimen had $I_o = 50mm$ and $A_o = 322.6mm^2$.

At one point in the tensile test, the gage length $l_1 = 63.5mm$ and the corresponding engineering stress $\sigma_{n1} = 172.5MPa$; at another point, the tensile test prior to necking, the gage length $l_2 = 78.5mm$ and the corresponding engineering stress $\sigma_{n2} = 193MPa$.

Determine the strength coefficient K and strain-hardening exponent n.

Thank You