

Metal Forming Processes — ME5807

Dr. Yogesh Kumar

Department of Mechanical Engineering National Institute of Technology Patna, Bihar, India - 800 005

Email: yogesh.me@nitp.ac.in

Tel: +91-9410478242

4 September 2020

Introduction to Metal Forming

Classification of Metal Forming Processes

Metal Forming is the largest group of manufacturing processes in which plastic deformation is used to changed the shape of metal workpiece. In metal forming:-

- The tool, usually called as a die, applies stresses that exceed the yield strength of the metal.
- The metal takes a shape determined by the geometry of the die.

Classification of Metal Forming Processes

- 1. Bulk Forming (stock has high V/A)
 - Rolling
 - Forging
 - Extrusion
 - Wire and bar drawing
- 2. Sheet metal working (stock has low V/A)
 - Bending
 - Deep drawing
 - Cutting

Bulk Forming Processes

- Characterised by significant deformations and massive shape changes
- "Bulk" refers to workparts with relatively low surface area-to-volume ratios.
- Starting work shapes include cylindrical billets and rectangular bars.

Wire and Bar Drawing

Sheet Metal Working

- Forming and related operations performed on metal sheets, strips, and coils
- High surface area-to-volume ratio of starting metal, which distinguishes these from bulk deformation
- Often called pressworking because presses perform these operations.
 - Parts are called stampings
 - Usual tooling: punch and die

Material Behaviour in Metal Forming

Compressive stresses	Tensile and Compressive
• Examples: rolling, forging, extrusion.	Examples: Bending.
Tensile stresses	Shear stresses
Examples: Stretching.	Examples: Punching.

Material Properties in Metal Forming

The following material properties which decides that how the behave under loading..

- Strength
- Hardness
- Toughness
- Elasticity
- Plasticity
- Malleability

The tensile test is used to determine:

- Modulus of Elasticity
- Elastic Limit
- Elongation
- Proportional limit
- Reduction in Area
- Tensile Strength
- Yield point
- Yield strength

The Stress (σ) ans strain (ϵ) can be plotted as:

- Nominal / Engineering Stress-Strain, or
- True Stress-Strain

Nominal (Engineering) Stress,
$$\sigma_n = \frac{F}{A_o}$$

Nominal(Engineering) Strain
$$\epsilon_n = \frac{l - l_o}{l_o} = \frac{\Delta l}{l_o}$$

Tensile Test / Properties - Ductility

in terms of elongation,
$$\delta = (\frac{l_f - l_o}{l_o})x100$$

in term of reduction in cross-sectional area, $\psi = (\frac{A_o - A_f}{A_o})x100$

Material Properties in Metal Forming

- Desirable material properties:
 - Low yield strength
 - High ductility
- Properties affected by temperature:
 - Ductility increases and yield strength decreases when work temperature is raised.
- Other factors:
 - Strain rate and friction.

