Assignment Problem using Hungarian Algorithm

Dr Yogesh Kumar
Department of Mechanical Engineering
National Institute of Technology Patna

Assignment Problem

An assignment problem seeks to minimize the total cost assignment of m workers to m jobs, given that the cost of worker i performing job j is $c_{i j}$.
It assumes all workers are assigned and each job is performed.
An assignment problem is a special case of a transportation problem in which all supplies and all demands are equal to 1 ; hence assignment problems may be solved as linear programs.
The graph representation of an assignment problem with three workers and three jobs is shown on the next slide.

Assignment Problem

Graph (or Network) Representation

Hungarian Method

The Hungarian method solves minimization assignment problems with m workers and m jobs.
Special considerations can include:
number of workers does not equal the number of jobs - add dummy workers/jobs with 0 assignment costs as needed
worker i cannot do job $j-\operatorname{assign} c_{i j}=+M$ maximization objective - create an opportunity loss matrix subtracting all profits for each job from the maximum profit for that job before beginning the Hungarian method

Hungarian Method

Step 1: For each row, subtract the minimum number in that row from all numbers in that row.
Step 2: For each column, subtract the minimum number in that column from all numbers in that column.
Step 3: Draw the minimum number of lines to cover all zeroes. If this number $=m$, STOP - an assignment can be made.
Step 4: Determine the minimum uncovered number (call it d).

Subtract d from uncovered numbers.
Add d to numbers covered by two lines.
Numbers covered by one line remain the same. Then, GO TO STEP 3.

Hungarian Method

Finding the Minimum Number of Lines and
Determining the Optimal Solution
Step 1: Find a row or column with only one unlined zero and circle it. (If all rows/columns have two or more unlined zeroes choose an arbitrary zero.)
Step 2: If the circle is in a row with one zero, draw a line through its column. If the circle is in a column with one zero, draw a line through its row. One approach, when all rows and columns have two or more zeroes, is to draw a line through one with the most zeroes, breaking ties arbitrarily.
Step 3: Repeat step 2 until all circles are lined. If this minimum number of lines equals m, the circles provide the optimal assignment.

Example 1: AP

A contractor pays his subcontractors a fixed fee plus mileage for work performed. On a given day the contractor is faced with three electrical jobs associated with various projects. Given below are the distances between the subcontractors and the projects.

		Project		
		\underline{A}	\underline{B}	\underline{C}
Subcontractors	Westside	50	36	16
	Federated	28	30	18
	Goliath	35	33	20

How should the contractors be assigned to minimize total costs?

Example 1: AP

Step 1: Subtract minimum number in each row from all numbers in that row.

	$\underline{\mathrm{A}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$
Westside	50	36	$\underline{16}$
Federated	28	30	$\underline{18}$
Goliath	35	33	$\underline{20}$

This yields:

Westside	34	20	0
Federated	10	12	0
Goliath	15	13	0

Example 1: AP

Step 2: Subtract the minimum number in each column from all numbers in the column. For A it is 10, for B it is 12 , for C it is 20 . This yields:

	$\underline{\mathrm{A}}$	$\underline{\mathrm{B}}$	$\underline{\mathrm{C}}$
Westside	24	8	0
Federated	0	0	0
Goliath	5	1	0

Example 1: AP

Step 3: Draw the minimum number of lines to cover all zeroes (called minimum cover). Although one can "eyeball" this minimum, use the following algorithm. If a "remaining" row has only one zero, draw a line through the column. If a remaining column has only one zero in it, draw a line through the row. Since the number of lines that cover all zeros is $2<3$ (\# of rows), the current solution is not optimal.

Westside
Federated
Goliath

Step 4: The minimum uncovered number is 1 (circled).

Example 1: AP

Step 5: Subtract 1 from uncovered numbers; add 1 to all numbers at line intersections; leave all other numbers intact. This gives:

Westside
Federated
Goliath

Example 1: AP

Find the minimum cover:

Step 4: The minimum number of lines to cover all 0's is three. Thus, the current solution is optimal (minimum cost) assignment.

Example 1: AP

The optimal assignment occurs at locations of zeros such that there is exactly one zero in each row and each column:

	\underline{A}	\underline{B}	\underline{C}
Westside	23	7	0
Federated	0	0	1
Goliath	4	0	0

Example 1: AP

The optimal assignment is (go back to the original table for the distances):

Subcontractor		Project		Distance
Westside	C		16	
Federated	A	28		
Goliath	B	33		
Total Distance			$=77$ miles	

Assignment Problem (Unbalance Problems) using Hungarian Algorithm

Dr Yogesh Kumar
Department of Mechanical Engineering
National Institute of Technology Patna

Example 2: AP

A contractor pays his subcontractors a fixed fee plus mileage for work performed. On a given day the contractor is faced with three electrical jobs associated with various projects. Given below are the distances between the subcontractors and the projects.

		Project		
		\underline{A}	\underline{B}	\underline{C}
Subcontractors	Westside	50	36	16
	Federated	28	30	18
	Goliath	35	33	20
	Universal	25	25	14

How should the contractors be assigned to minimize total costs?
Note: There are four subcontractors and three projects. We create a dummy project Dum, which will be assigned to one subcontractor (i.e. that subcontractor will remain idle)

Example 2: AP

Initial Tableau Setup
Since the Hungarian algorithm requires that there be the same number of rows as columns, add a Dummy column so that the first tableau is (the smallest elements in each row are marked red):

	\underline{A}	\underline{B}		Dummy
Westside	50	36	16	0
Federated	28	30	18	0
Goliath	35	33	20	0
Universal	25	25	14	0

Example 2: AP

Network Representation (note the dummy project)

Slide 18 of 29

Assignment Problem

Linear Programming Formulation

$$
\text { for each resource (row) } i
$$

Note: A modification to the right-hand side of the first constraint set can be made if a worker is permitted to work more than 1 job.

Example 2: AP via LP

In our example the LP formulation is:

$$
\begin{gathered}
\operatorname{Min} z=50 x_{11}+36 x_{12}+16 x_{13}+0 x_{14}+28 x_{21}+30 x_{22}+18 x_{23}+0 x_{24}+ \\
35 x_{31}+32 x_{32}+20 x_{33}+0 x_{34}++25 x_{41}+25 x_{42}+14 x_{43}+0 x_{44}
\end{gathered}
$$

s.t.

$$
\begin{array}{ll}
x_{11}+x_{12}+x_{13}+x_{14}=1 & (\text { row } 1) \\
x_{21}+x_{22}+x_{23}+x_{24}=1 & (\text { row } 2) \\
x_{31}+x_{32}+x_{33}+x_{34}=1 & (\text { row } 3) \\
x_{41}+x_{42}+x_{43}+x_{44}=1 & (\text { row } 4) \\
x_{11}+x_{21}+x_{31}+x_{41}=1 & (\text { column } 1) \\
x_{12}+x_{22}+x_{32}+x_{42}=1 & (\text { column } 2) \\
x_{13}+x_{23}+x_{33}+x_{43}=1 & (\text { column } 3) \\
x_{14}+x_{24}+x_{34}+x_{44}=1 & (\text { column } 4) \\
x_{i j}>=0 \text { for } i=1,2,3,4 \text { and } j=1,2,3,4 \text { (nonnegativity) }
\end{array}
$$

Example 2: AP

Step 1: Subtract minimum number in each row from all numbers in that row. Since each row has a zero, we simply generate the original matrix (the smallest elements in each column are marked red). This yields:

	\underline{A}	B	\underline{C}	$\underline{\text { Dummy }}$
Westside	50	36	16	0
Federated	28	30	18	0
Goliath	35	33	20	0
Universal	25	25	14	0

Example 2: AP

Step 2: Subtract the minimum number in each column from all numbers in the column. For A it is 25 , for B it is 25 , for C it is 14 , for Dummy it is 0 . This yields:

	\underline{A}	\underline{B}	\underline{C}	$\underline{\text { Dummy }}$
Westside	25	11	2	0
Federated	3	5	4	0
Goliath	10	8	6	0
Universal	0	0	0	0

Example 2: AP

Step 3: Draw the minimum number of lines to cover all zeroes (called minimum cover). Although one can "eyeball" this minimum, use the following algorithm. If a "remaining" row has only one zero, draw a line through the column. If a remaining column has only one zero in it, draw a line through the row. Since the number of lines that cover all zeros is $2<4$ (\# of rows), the current solution is not optimal.

Step 4: The minimum uncovered number is 2 (circled).

Example 2: AP

Step 5: Subtract 2 from uncovered numbers; add 2 to all numbers at line intersections; leave all other numbers intact. This gives:

Example 2: AP

Step 3: Draw the minimum number of lines to cover all zeroes. Since 3 (\# of lines) < 4 (\# of rows), the current solution is not optimal.

Step 4: The minimum uncovered number is 1 (circled).

Example 2: AP

Step 5: Subtract 1 from uncovered numbers. Add 1 to numbers at intersections. Leave other numbers intact. This gives:

	$\frac{\mathrm{A}}{\mathrm{B}}$	$\frac{\mathrm{C}}{}$	$\frac{\text { Dummy }}{}$	
Westside	23	9	0	1
Federated	0	2	1	0
Goliath	7	5	3	0
Universal	0	0	0	3

Example 2: AP

Find the minimum cover:

Step 4: The minimum number of lines to cover all 0's is four. Thus, the current solution is optimal (minimum cost) assignment.

Example 2: AP

The optimal assignment occurs at locations of zeros such that there is exactly one zero in each row and each column:

	$\frac{\mathrm{A}}{\mathrm{B}}$	$\frac{\mathrm{C}}{}$	$\underline{\text { Dummy }}$	
Westside	23	9	0	1
Federated	0	2	1	0
Goliath	7	5	3	0
Universal	0	0	0	3

Example 2: AP

The optimal assignment is (go back to the original table for the distances):

Subcontractor Project Distance
Westside
C
16
Federated
A
28
Universal
B
25
Goliath
(unassigned)
$$
\text { Total Distance }=69 \text { miles }
$$

